
Drag reduction in homogeneous turbulence by scale-dependent effective viscosity

Roberto Benzi,1,2 Emily S. C. Ching,2 and Itamar Procaccia2,3

1Dipartimento di Fisica and INFM, Università “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy
2Departiment of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong

3Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, 76100 Israel
(Received 6 January 2004; published 13 August 2004)

We demonstrate, by using suitable shell models, that drag reduction in homogeneous turbulence is usefully
discussed in terms of a scale-dependent effective viscosity. The essence of the phenomenon of drag reduction
found in models that couple the velocity field to the polymers can be recaptured by an “equivalent” equation
of motion for the velocity field alone, with a judiciously chosen scale-dependent effective viscosity that
succinctly summarizes the important aspects of the interaction between the velocity and the polymer fields.
Finally, we clarify the differences between drag reduction in homogeneous and in wall bounded flows.
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I. INTRODUCTION

The addition of long chained polymers to turbulent flows
can result in a significant reduction in the drag[1–4]. The
phenomenon was discovered in 1949[5] and has since at-
tracted much attention, with most of the experimental litera-
ture reviewed and systematized by Virk[3]; the amount of
drag reduction depends on the characteristics of the polymer
and its concentration, but cannot exceed an asymptote known
as the “maximum drag reduction”(MDR) curve which is
independent of the concentration of the polymer or its char-
acteristics. Recently, there is significant progress in the un-
derstanding of this phenomenon. A first step in forming an
understanding was performing direct numerical simulations
of model equations of viscoelastic flows, both in wall
bounded and in homogeneous turbulence[6–8]. The
Oldroyd-B and the finitely extensible nonlinear elastic-
Peterlin (FENE-P) models first, and then simplified models
like shell models and Burgers-like models[9–11], all exhib-
ited drag reduction as a result of including the interaction
between the velocity field and a second field representing the
polymer(end-to-end) conformation tensor, see Figs. 1 and 2.
In homogeneous turbulence, drag reduction is manifested as
an increase in the root-mean-square(rms) velocity fluctua-
tions at scales larger than the Lumley scale, which is defined
as the scale at which the eddy turnover time is of the order of
the polymer relaxation time. The intermediate scale rms en-
ergy fluctuations are suppressed due to a transfer of energy to
the polymers. In wall bounded turbulence, drag reduction
entails an increase in the mean velocity for a given pressure
head, see Fig. 1. Here the Reynolds stress at the intermediate
scales is suppressed[12]. We will argue, however, that there
is a difference between the increase in the rms velocity fluc-
tuations at large scales in homogeneous flows and the in-
crease in the mean velocity in wall bounded flows: the
former disappears when the system size goes to infinity(for
a fixed Lumley scale) whereas in the latter case, an increase
in the mean velocity near the wall(small and intermediate
scales) does not disappear with an increase in the system
size. This difference is fundamental to the different symme-
tries at play, the Galilean invariance in the case of the wall
bounded flow versus translational invariance in the case of

homogeneous flows. Nevertheless, we will argue later that
the two cases can be discussed in similar physical terms. In a
recent paper[13], it was shown that drag reduction in wall
bounded flows can be conveniently discussed in terms of a
“scale-dependent” effective viscosity. The aim of the present
paper is to demonstrate that this notion is also useful in the
context of homogeneous turbulence. In doing so we aim at
simplifying the theoretical description, eliminating the ex-
plicit presence of a second field in the equations of motion,
leaving the velocity field alone. The eliminated field, which
represents the conformation tensor of the polymers, remains
only as an effective viscosity in the equation of motion.
Needless to say, this effective viscosity cannot be a number,
since the amount of energy transferred from the velocity field
to the polymer is strongly scale dependent; in homogeneous
turbulence this transfer reaches a maximum near the Lumley
scale. In wall bounded flows the degree of interaction be-
tween the polymers and the velocity field is a strong function
of the distance from the wall, and so is the effective viscos-
ity. Of course, in a full theory a scale-dependent scalar vis-
cosity is not sufficient either, due to the anisotropy of the

FIG. 1. Mean velocity profile of the FENE-P(dashed line) and
of the Navier-Stokes equations(solid line) in wall bounded channel
flow as a function of the reduced distance from the wall. The rela-
tive increase of the mean velocity(indicated by the asymptotic
straight lines) is the phenomenon of drag reduction in wall bounded
flows.
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polymer end-to-end extension tensor. We would like to dem-
onstrate, however, that at least in the model equations, a
surprising proportion of the essential physics can be captured
in terms of the simple notion of a scale-dependent viscosity
which surrogates the existence of the second field. This
thinking goes back to some observations a few years ago
regarding the importance of space-dependent viscosity even
in the stability of laminar flows[14,15]. In Sec. II we review
the two-field models in which drag reduction was demon-
strated in numerical simulations. In Sec. III we present the
reduction to velocity-alone models with scale-dependent vis-
cosity. In Sec. IV we present a discussion of the large system
size limit and underline the difference between homogeneous
and wall bounded flows. Section V is dedicated to a short
summary and conclusions.

II. SHELL MODEL FOR DRAG REDUCTION
IN HOMOGENEOUS TURBULENCE

Viscoelastic flows are represented well by hydrodynamic
equations in which the effect of the polymer enters in the
form of a “conformation tensor”Rsr ,td which stems from
the ensemble average of the dyadic product of the end-to-end
distance of the polymer chains[16–19]. A successful model
that had been employed frequently in numerical simulations
of turbulent channel flows is the FENE-P model. Flexibility
and finite extensibility of the polymer chains are reflected by
the relaxation timet and the Peterlin functionPsr ,td, which
appear in the equation of motion forR:

] Rab

] t
+ su · = dRab =

] ua

] rg

Rgb + Rag

] ub

] rg

−
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fPsr,tdRab
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In these equationsrm
2 and r0

2 refer to the maximal and the
equilibrium values of the traceRgg. Since in most applica-
tions rm@r0 the Peterlin function can also be written ap-
proximately asPsr ,td<1/s1−aRggd where a=rm

−2. In its

turn the conformation tensor appears in the equations for the
fluid velocity usr ,td as an additional stress tensor
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] t
+ su · = du = − = p + ns¹
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Tsr,td =
np

t
FPsr,td

r0
2 Rsr,td − 1G . s4d

Herens is the kinematic viscosity of the neat fluid,F is the
forcing, andnp is a viscosity parameter which is related to
the concentration of the polymer, i.e.,np/ns,F whereF is
the volume fraction of the polymer. We note, however, that
the tensor field can be rescaled to get rid of the parameterrm

2

in the Peterlin function,R̃ab=aRab with the only conse-
quence of rescaling the parameterr0 accordingly. Thus, the
actual value of the concentration is open to calibration
against the experimental data. These equations were simu-
lated on the computer in a channel or pipe geometry, repro-
ducing faithfully the characteristics of drag reduction found
in experiments. It should be pointed out, however, that even
for present day computers simulating these equations is quite
tasking. It makes sense therefore to try to model these equa-
tions further. For the purpose of studying drag reduction in
homogeneous systems, one can derive a shell model whose
simplicity and transparency are assets for analysis and simu-
lations alike. In developing a simple model one is led by the
following ideas. First, it should be pointed out that all the
nonlinear terms involving the tensor fieldRsr ,td can be re-
produced by writing an equation of motion for a vector field
Bsr ,td, and interpretingRab as the dyadic productBaBb. The
relaxation terms with the Peterlin function are not automati-
cally reproduced this way, and one needs to add them by
hand. Second, we should keep in mind that the earlier equa-
tions exhibit a generalized energy which is the sum of the
fluid kinetic energy and the polymer free energy. Led by
these consideration the following shell model was proposed
in Refs.[9,11]:
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In these equationsun andBn stand for the Fourier amplitudes
usknd and Bsknd of the two respective vector fields, but as
usual in shell model we taken=0,1,2, . . . and thewave vec-
tors are limited to the setkn=2n. The parameternB=0.1ns is
an artificial viscosity needed to avoid the development of
unphysical singularities in the system. The nonlinear interac-
tion terms take the explicit form

FIG. 2. Energy spectrum of the Sabra shell model with polymer
(line) and the Sabra model without polymers(dashed line with sym-
bols) for ns=10−7. The relative increase of the energy spectrum at
small values ofn is the phenomenon of drag reduction in homoge-
neous turbulence in general and in shell models in particular, see
Sec. III for details.
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Fnsu,Bd = knfs1 − bdun+2Bn+1
* + s2 + bdun+1

* Bn+2g + kn−1fs2b

+ 1dun−1
* Bn+1 − s1 − bdun+1Bn−1

* g + kn−2fs2

+ bdun−1Bn−2 + s2b + 1dun−2Bn−1g, s6d

with b as a parameter and the obvious extension toFnsu,ud,
FnsB,ud and FnsB,Bd. In accordance with the generalized
energy of the FENE-P model[18,19], our shell model also
has the total energy

E ;
1

2o
n

uunu2 −
1

2

np

t
lnS1 −o

n

uBnu2D . s7d

The second term in the generalized energy contributes to the
dissipation a positive definite term of the form
snp/t2dP2sBdonuBnu2. With np=0 the first of Eqs.(5) reduces
to the well-studied Sabra model of Newtonian turbulence.
We therefore refer the model withnpÞ0 as the SabraP
model. As in the FENE-P case we considerc;np/ns to be
proportional to the concentration of polymers. In Ref.[9] it
was shown that this shell model exhibits drag reduction, and
the mechanism for the phenomenon was elucidated. Further-
more, it was shown in Ref.[11] that for large enough con-
centration, the Peterlin function can be disregarded(i.e, P
<1) and, consequently, the dynamics of the system becomes
concentration independent, i.e., we reach the MDR asymp-
tote. This behavior of the Peterlin function is shown in Fig.
3. Following this finding, we consider below the limiting
case in which the concentration is large enough for the Pe-
terlin function to be close to unity,P<1. Finally, all the
numerical simulations reported in this paper have been per-
formed by usingb=−0.2, ns=10−7, and a constant energy
input given by

Fn =
10−3

un
* s8d

for n=1,2 andFn=0 for n.2. We remark that for different
values ofb one obtains the samequalitative(but not quanti-
tative) results, which we shall describe later. A constant en-
ergy input is chosen in order to provide clear evidence of
drag reduction: for the same energy input, drag reduction is

observed as an increase in the total kinetic energy of the
flow.

III. SCALE DEPENDENT EFFECTIVE VISCOSITY
IN HOMOGENEOUS DRAG REDUCTION

Drag reduction in homogeneous turbulence is manifested
as a relative increase in the rms fluctuations of the energy at
large scales. We thus focus naturally on the energy spectrum
esknd;kunun

*l. In the context of the shell model the phenom-
enon is demonstrated in Fig. 2 whereesknd is shown for the
given values of the parameters. The spectra for the Sabra
model (line with symbols) and the coupled SabraP model
(line) are compared for the same amount of power input per
unit time. The discussion of the spectra revolves around the
typical Lumley scalekc which is determined by the condition

e1/2skcdkc < t−1kPsBdl. s9d

For kn@kc the decay timet becomes irrelevant for the dy-
namics ofBn. The nonlinear interaction betweenun andBn at
these scales results in both of them having, theoretically, the
same spectral exponent which is also the same as that of the
Sabra model. The amplitude of theun spectrum in the SabraP
model is, however, smaller than that of the Sabra model
since theBn field adds to the dissipation. On the other hand,
for kn!kc, the Bn field is exponentially suppressed by its
decay with relaxation timet, and the spectral exponent ofun
is again as in the Sabra model. Drag reduction comes about
due to the interactions of theun andBn fields at length scales
of the order ofkc, which force a strong tilt in theun spectrum
there, causing it to cross the Sabra spectrum, leading to an
increase in the amplitude of the energy containing scales.
This is why the kinetic energy is increased for the same
amount of power input, and hence, drag reduction. A com-
plete theoretical discussion is presented in Ref.[9]. In Fig. 4,
we show the spectrum of energy dissipationkn

2esknd. This

FIG. 3. The average value of the Peterlin functionPsBd as a
function of c computed in the SabraP model. The dashed line cor-
responds toP=1.

FIG. 4. The spectrum of the energy dissipationkn
2esknd for the

Sabra(solid line with symbol) and the SabraP models(dashed line).
Both models have a maximum atkn with n,15, which corresponds
to the peak in the energy dissipation.
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figure indicates that the dissipative scale is not changed
much by the coupling of the velocity field to the polymer
field: both the Sabra and SabraP models show a maximum at
kn with n,15, which is the dissipative scale. We now ad-
dress the question how to recapture the same phenomenon in
a model involving the velocity field alone but with a scale-
dependent effective viscosity. We first reiterate that the field
un loses energy in favor of the fieldBn. Using Eq.(5) we can
measure the energy transfer fromun to Bn using the quantity

Sp ; o
n

spsknd ;
npPsBd

3t
RehiSnun

*FnsB,Bdj. s10d

This function measures the exchange between the fluid ki-
netic energy and the “polymer” or “elastic” energy. In Fig. 5
we show a snapshot of the dependence of the functionSp on
time. The point to notice is thatSp is negative for most of the
time. TheBn field drains energy from the velocity field, and
we therefore can hope to be able to capture its role by an
effective viscosity. Note, however, that the dynamics ofSp is
strongly intermittent; this feature is common to the shell
model and the FENE-P model as observed in the direct nu-
merical simulations of the latter. We cannot hope to capture
all the temporal complexity with the notion of effective vis-
cosity, since the latter is an average notion. Nevertheless, the
essential features will be shown to be reproduced. We will
try to capture the effect ofSp in terms of an effective viscos-
ity as follows: usingk. . .l for the (time) average, we intro-
duce the scale dependent effective viscositynesknd as

nesknd = −
kspskndl
kn

2esknd
. s11d

The quantity nesknd is shown in Fig. 6; its maximum is
reached atkn with n,6–7, awave number which is not yet
in the dissipative range. It is important to stress thatnesknd is
obtained by averaging over a complex and intermittent dy-
namical behavior of the viscoelastic shell model. It is there-
fore not obvious that the main characteristics of drag reduc-
tion can be obtained by simply replacing the viscoelastic
termsFnsB,Bd by a scale-dependent effective viscosity. We
demonstrate that this is possible by using now the Sabra
model with an extra viscous term given byneskndkn

2un. The

new viscous term replaces, on the average, the effect of vis-
coelastic terms proportional toFnsB,Bd. The equations of
motion read

dun

dt
=

i

3
Fnsu,ud − neskndkn

2un − nskn
2un + Fn. s12d

We do not expect thatnesknd in the dynamicsof the Sabra
model, as proposed in Eq.(12), will be exactly the object
measured on the average defined in Eq.(11). We clearly must
keep the functional dependence ofne on kn, but we can allow
a factor of proportionally that will take care of the difference
between the dynamical intermittent behavior and the average
behavior. We will therefore use the formanesknd, wherea is
a constant that can be optimized to achieve a close corre-
spondence between the two-field model and the effective
one-field model. Fora=0 it reduces to the Sabra model
without effective viscosity. We simulated the Sabra model
with the effective viscosity[Eq. (12)] for different values of
a in the ranges0,1d. Drag reduction was found in all cases.
For a=0.3 the energy spectrum on the large scales, the most
relevant ones for drag reduction to occur, turns out to be very
close to the SabraP modelwith the viscoelastic terms. In Fig.
7 we show the energy spectrum of the SabraP model and the
energy spectrum of the Sabra model with effective viscosity
for a=0.3. It is interesting to understand whether one can
compute the value ofnesknd by using somea priori theoret-
ical estimates. We argue that this is possible by the following
considerations.nesknd should reach its maximum near the
scalekc. Next, let us definene

M as the maximum value of
nesknd. One can computene

M by the requirement that the Kol-
mogorov scalekM, computed by usinge (the constant energy
input) andne

M, must be as large as possible, although smaller
than kc. Thus, forkn.kc and kn,kc, the detailed shape of
nesknd is not crucial to affect the dynamics of the system, i.e.,
the detailed functional dependence ofneskd on kn is not rel-
evant as long as the region whereneskdÞ0 is not too narrow

FIG. 5. Time behavior ofSp, as defined in Eq.(10), which
represents the whole energy exchange from theun field to Bn. Nega-
tive values ofSp means that energy is taken fromun.

FIG. 6. The values of the eddy viscositynesknd defined in Eq.
(11) for PsBd=1. Note that this quantity rises rapidly in the vicinity
of the Lumley scale.
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about the scalekc. These arguments will be the subject for
future investigations.

In order to check that the results shown in Fig. 7 are due
to a scale-dependentdissipation, we have defined ascale-
independent viscositynA as

nA =
kSpl

Snkn
2esknd

. s13d

The definition ofnA is similar to that given in Eq.(11), i.e.,
nA is defined such that, by adding a viscous termnAkn

2un to
the Sabra model, the systemon the averageis losing the
same amount of energy as in the case of viscoelastic flows. It
turns out that in our casenA,2.5310−7. By using this value
for nA we have numerically integrated the Sabra model by
adding a new viscosity equal tonA, namely

dun

dt
=

i

3
Fnsu,ud − nAkn

2un − nskn
2un + Fn. s14d

The corresponding energy spectrum is shown in Fig. 8 to-
gether with the energy spectrum for the Sabra model(viscos-

ity ns) and the Sabra model with the effective viscosity
0.3nesknd. As one can clearly see, an increase of the dissipa-
tion for all scales does not result in a drag reduction. Finally,
we have computed the energy flux of the Sabra model with
effective dissipation and compared it against the energy flux
of the SabraP model. This comparison is exhibited in Fig. 9
where the solid line corresponds to the SabraP model and the
symbols correspond to the Sabra model with effective dissi-
pation 0.3nesknd. The two energy fluxes are equal in the in-
ertial range up to wave numberkn with n,7.

The results illustrated so far support the conclusion that a
scale-dependent effective viscosity is able to reproduce most
of the dynamics of the viscoelastic terms and, in particular,
the phenomenon of drag reduction. Let us remark once more,
that it is the scale dependenceof the effective viscosity
which is able to properly reproduce the drag reduction. It is
worthwhile to explain the mechanism of the action of the
scale-dependent viscosity, to understand its similarity to the
action of the polymers. For fixed energy input, as in our case,
drag reduction is shown as an increase of the rms fluctua-
tions at scales larger than the Lumley scale. The scale-
dependent effective viscosity increases the viscous terms
kn

2un in a particular range of scales, say fornc,n,n2, where
nc=log2skcd. The energy fluxPn in the system is given by the
third order correlation functionPn,kun−1

* un
*un+1l. As shown

in Fig. 9, we can safely assert that the energy flux does not
change forn,nc. The increase of viscosity atn=nc produces
a decrease of the energy at scalenc. Thus, we expectunc

to
decrease with respect to the value observed in the Newtonian
case. SincePn is not affected by the increase of the viscosity
at n=nc, we must conclude that the quantityun−1un should
increase whileunc

decreases. This is the origin of the tilt in
the spectrum and the increase ofun spectrum in the vicinity
of nc. From a physical point of view, this picture is not dif-
ferent from the one discussed in Ref.[9] where a similar
explanation for the drag reduction was invoked. Note that all
that we need for the phenomenon to occur is that the increase
in viscosity should start at the right scale. This scale is
equivalent to the Lumley scale whose role in the viscoelastic
case has been already emphasized.

Finally, we discuss the effect of changing the concentra-
tion on the effective viscosity. WhenkPsBdl.1 the effective
viscosity depends on the Peterlin function, which in turn de-
pends on the concentrationc and on the relaxation timet, cf.

FIG. 7. The energy spectrum of the SabraP model(solid line) as
compared with the energy spectrum of the Sabra model with the
effective viscosity anda=0.3 (symbols) and the Sabra model with-
out effective viscosity(dashed line).

FIG. 8. Energy spectrum of the Sabra model forns (line), the
Sabra model with increased viscositynA (symbols), and for the
Sabra model with an effective viscosity 0.3nesknd (dashed line).

FIG. 9. Energy flux computed for the SabraP model(solid line)
and the Sabra model with effective viscosity(symbols).
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Eq. (11). Figure 10 displays the effective viscosity as a func-
tion of kn for four values of the concentration,c=10−2, 10−1,
10, and 100. As the concentration decreases, the effective
viscosity decreases, and its peak migrates to higher values of
kn. This migration is simply due to the change in the Lumley
scale, cf. Eq.(9). The decrease in the effective viscosity is
due to the increase inkPsBdl shown in Fig. 3. Needless to
say, these changes in the effective viscosity decrease the ef-
fect of drag reduction, as seen in experiments and simula-
tions: only large concentrations agree with the MDR asymp-
tote.

IV. THE LIMIT OF LARGE SYSTEM SIZE

In this section we want to discuss the limitk0→0 while
keeping fixed the scale and the shape of the effective viscos-
ity. In other words, we studyk0→0 for fixed value of the
Lumley scalekc. Note that we takekc much smaller than the
dissipative scale and we keep constant the rate of energy
input e.

The discussion simplifies by considering the other typical
scale in our system, which is the Taylor microscalelT:

lT ;Îonkuunu2l
okn

2uunu2
. s15d

In Ref. [9] it was shown that the conditions are optimal for
drag reduction in our shell model when a dimensionless pa-
rameter,m;lTkc, is of the order of unity. On the other hand
drag reduction is lost whenm@1 or m!1. Obviously, when
k0→0 the overall kinetic energy increases ask0

−2/3 while the
denominator in Eq.(15) remains unchanged, being domi-
nated by the viscous scale. Thus,k0→0 leads tolT→`, and
we expect to lose drag reduction in that limit(for a fixed
value of kc). This conclusion is supported by the results
shown in Fig. 11, where we plot the ratio between the kinetic
energy with the effective viscosity and the Newtonian kinetic
energy forL;k0

−1→`. The caseL=1 corresponds to the

previous sections. Note that forL large enough, the system
exhibits drag enhancement. Physically, for very large values
of kc/k0 the effective dissipation is just increasing the overall
viscosity in the system and, therefore, no drag reduction can
be observed. For drag reduction to occur we must have the
Lumley scale close to energy containing scales. Note, how-
ever, that “close” in our case meanskc,50–100 larger than
the integral scalek0.

It is interesting to compare our findings, which pertain to
homogeneous systems, to drag reduction in turbulent bound-
ary layers. The elastic layer in such flows(between the vis-
cous layer and the Newtonian plug) has the peculiar distinc-
tion that y, the distance from the wall, becomes the only
important scale in the problem. It is both the energy contain-
ing scale and the Lumley scale at the same time. The former
is clear; at distancey from the wall the most energetic eddies
are of sizey. The latter needs a bit of theory, and this is
provided in Ref.[13]. The upshot of the analysis there is that
in the elastic layer the kinetic energyKsyd scales likeKsyd
,y2/t2. Thus, the Lumley scale is alsoy. Accordingly, the
phenomenon of drag reduction is totally indifferent to the
physical size of the channel(or pipe). As long as the condi-
tions for drag reduction hold at distancey from the wall, drag
reduction will occur and will have a persistent effect on the
mean flow independently of the outer scale. Eventually,
wheny is large enough,Ksyd may stop growing likey2, the
Lumley scale decreases, and we observe crossover back to
the Newtonian log layer, albeit shifted to a larger value of a
mean velocity profile.

In summary, drag reduction phenomena in homogeneous
and wall bounded flows have a lot in common even though
the effect disappears in the former when the system size goes
to infinity. The essential physics is the proximity of the Lum-
ley scale to the energy containing scales, which allows an
effective interaction between the polymer dynamics and the
hydrodynamic modes.

V. CONCLUSIONS

The work presented in this paper supports two conclu-
sions. First, we demonstrated that drag reduction by poly-

FIG. 10. Effective viscosity for varying the concentration:c
=10−2 (circles), c=10−1 (squares), c=10 (triangles), and c=100
(line).

FIG. 11. Ratio of the kinetic energy for the Sabra model with
scale dependent viscosity and the kinetic energy of ths Sabra model
with fixed kinematic viscosity, for different values ofL;k0

−1. Note
that for drag reduction to occurs the ratio must be larger than 1. The
scale of the maximum in the scale dependent viscosity is kept fixed
while L→`.
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mers can be represented in terms of an effective scale depen-
dent viscosity. One can use a theory in which two fields are
explicitly present, i.e., the velocity field and the polymer
field. Then the viscosity remains Newtonian, and the poly-
mer conformation tensor acts as the additional sink of energy
at the intermediate scales which are larger than the viscous
scales but smaller than the Lumley scale. We can construct,
however, effective models in which only the velocity field is
present, and replace the polymer field by an effective viscos-
ity. This effective viscosity will be different from the New-
tonian one at the crucial scales at which the polymers are
active, i.e., scales larger than the dissipative scales but
smaller than the Lumley scale. With a properly chosen effec-
tive viscosity we can reproduce the results of the two-field
theory qualitatively and even semiquantitatively. Having
done so, we reach a unified discussion of drag reduction by
polymers in homogeneous and wall bounded flows. It is
worth pointing out, however, that the unified discussion is
deeper than the device of unified viscosity. Superficially drag
reduction in homogeneous and wall bounded turbulence ap-
pear very different. In the former there is no mean flow and
drag reduction appears as an increase of the rms fluctuations
of the large scales. In the latter drag reduction means the
increase of the mean flow velocity. Nevertheless in essence
the phenomenon of drag reduction in homogeneous and wall
bounded flows is basically the same: the polymers act to
reduce the gradients at the intermediate scales. They partly
laminarize the flow at the intermediate scales, and this allows

the largest scales to attain higher rms fluctuation levels(in
homogeneous flows) or higher mean velocity(in wall
bounded flows). To understand this further recall that for
laminar flows the drag is a strongly decaying function of Re.
Once turbulence sets in, the dramatic increase in eddy vis-
cosity contributes to a drag which is much larger than the
one obtained in a hypothetical laminar flow with the same
value of Re. The addition of polymers allows one to bring
the drag closer to the hypothetical low laminar value, and
this is done by reducing the turbulence level at intermediate
scales. Whether one prefers to describe the quantitative as-
pects of this phenomenon using explicitly the polymer field
or by employing an effective viscosity depends to a large
extent on one’s goals. We expect that the concept of effective
viscosity will be found equally useful in discussing drag re-
duction in other situations, for example when microbubbles
are used instead of polymers. The quantitative aspects of
such a description need, however, to be worked out case by
case, and this is our program for the near future.
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