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Drag reduction in homogeneous turbulence by scale-dependent effective viscosity
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We demonstrate, by using suitable shell models, that drag reduction in homogeneous turbulence is usefully
discussed in terms of a scale-dependent effective viscosity. The essence of the phenomenon of drag reduction
found in models that couple the velocity field to the polymers can be recaptured by an “equivalent” equation
of motion for the velocity field alone, with a judiciously chosen scale-dependent effective viscosity that
succinctly summarizes the important aspects of the interaction between the velocity and the polymer fields.
Finally, we clarify the differences between drag reduction in homogeneous and in wall bounded flows.

DOI: 10.1103/PhysRevE.70.026304 PACS nunerd7.27.Nz, 47.27.Ak

I. INTRODUCTION homogeneous flows. Nevertheless, we will argue later that

The addition of long chained polymers to turbulent flowsthe two cases can be discussed in similar physical terms. In a
can result in a significant reduction in the drfig-4]. The  recent papefl13], it was shown that drag reduction in wall
phenomenon was discovered in 1980 and has since at- bounded flows can be conveniently discussed in terms of a
tracted much attention, with most of the experimental litera-'scale-dependent” effective viscosity. The aim of the present
ture reviewed and systematized by Vi®]; the amount of paper is to demonstrate that this notion is also useful in the
drag reduction depends on the characteristics of the polymeontext of homogeneous turbulence. In doing so we aim at
and its concentration, but cannot exceed an asymptote knowgimplifying the theoretical description, eliminating the ex-
as the “maximum drag reductionMDR) curve which is  plicit presence of a second field in the equations of motion,
independent of the concentration of the polymer or its charleaving the velocity field alone. The eliminated field, which
acteristics. Recently, there is significant progress in the unrepresents the conformation tensor of the polymers, remains
derstanding of this phenomenon. A first step in forming anonly as an effective viscosity in the equation of motion.
understanding was performing direct numerical simulations\eedless to say, this effective viscosity cannot be a number,
of model equations of viscoelastic flows, both in wall since the amount of energy transferred from the velocity field
bounded and in homogeneous turbulenf@-8. The to the polymer is strongly scale dependent; in homogeneous
Oldroyd-B and the finitely extensible nonlinear elastic-turbulence this transfer reaches a maximum near the Lumley
Peterlin(FENE-P models first, and then simplified models scale. In wall bounded flows the degree of interaction be-
like shell models and Burgers-like modg®-11], all exhib-  tween the polymers and the velocity field is a strong function
ited drag reduction as a result of including the interactionof the distance from the wall, and so is the effective viscos-
between the velocity field and a second field representing thigy. Of course, in a full theory a scale-dependent scalar vis-
polymer (end-to-engl conformation tensor, see Figs. 1 and 2. cosity is not sufficient either, due to the anisotropy of the
In homogeneous turbulence, drag reduction is manifested as
an increase in the root-mean-squanms) velocity fluctua-
tions at scales larger than the Lumley scale, which is defined
as the scale at which the eddy turnover time is of the order of 5 |
the polymer relaxation time. The intermediate scale rms en- [
ergy fluctuations are suppressed due to a transfer of energy to
the polymers. In wall bounded turbulence, drag reduction S r
entails an increase in the mean velocity for a given pressure
head, see Fig. 1. Here the Reynolds stress at the intermediate
scales is suppresséti?]. We will argue, however, that there
is a difference between the increase in the rms velocity fluc-
tuations at large scales in homogeneous flows and the in-
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former disappears when the system size goes to infifoty ¥

a fixed Lumley scalgwhereas in the latter case, an increase Fic. 1. Mean velocity profile of the FENE-@lashed lingand

in the mean velocity near the walmall and intermediate of the Navier-Stokes equatioksolid line) in wall bounded channel
scaleg does not disappear with an increase in the systemow as a function of the reduced distance from the wall. The rela-
size. This difference is fundamental to the different symmetive increase of the mean velociijndicated by the asymptotic
tries at play, the Galilean invariance in the case of the walktraight lineg is the phenomenon of drag reduction in wall bounded
bounded flow versus translational invariance in the case dfows.
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turn the conformation tensor appears in the equations for the
fluid velocity u(r,t) as an additional stress tensor
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FIG. 2. Energy spectrum of the Sabra shell model with polymer0T¢INg, @nd; is & viscosity parameter which is related to
(line) and the Sabra model without polymédashed line with sym- e concentration of the polymer, i.ey/vs~® where® is
bols) for »=10"7. The relative increase of the energy spectrum atth€ volume fraction of the polymer. We note, however, that
small values of is the phenomenon of drag reduction in homoge- the tensor field can be rescaled to get rid of the paramgter
neous turbulence in general and in shell models in particular, sen the Peterlin functionR,z=aR,s with the only conse-
Sec. Il for details. guence of rescaling the parametgraccordingly. Thus, the
actual value of the concentration is open to calibration
polymer end-to-end extension tensor. We would like to demagainst the experimental data. These equations were simu-
onstrate, however, that at least in the model equations, &ted on the computer in a channel or pipe geometry, repro-
surprising proportion of the essential physics can be Capture@UCing faithfully the characteristics of drag reduction found
in terms of the simple notion of a scale-dependent viscosityn €xperiments. It should be pointed out, however, that even
which surrogates the existence of the second field. Thior present day computers simulating these equations is quite
thinking goes back to some observations a few years agi@sking. It makes sense therefore to try to model these equa-
regarding the importance of space-dependent viscosity evelipns further. For the purpose of studying drag reduction in
in the stability of laminar flow§14,15. In Sec. Il we review homogeneous systems, one can derive a shell model whose
the two-field models in which drag reduction was demon-simplicity and transparency are assets for analysis and simu-
strated in numerical simulations. In Sec. Il we present thdations alike. In developing a simple model one is led by the
reduction to velocity-alone models with scale-dependent visfollowing ideas. First, it should be pointed out that all the
cosity. In Sec. IV we present a discussion of the large systerfionlinear terms involving the tensor fieR{r,t) can be re-
size limit and underline the difference between homogeneougroduced by writing an equation of motion for a vector field
and wall bounded flows. Section V is dedicated to a shorB(r,t), and interpretin®R,; as the dyadic produ®,Bg. The
summary and conclusions. relaxation terms with the Peterlin function are not automati-
cally reproduced this way, and one needs to add them by
Il SHELL MODEL FOR DRAG REDUCTION hand. Sec_:o_nd, we shogld keep in minq thgt the earlier equa-
IN HOMOGENEOUS TURBULENCE tions exhibit a generalized energy which is the sum of the
fluid kinetic energy and the polymer free energy. Led by
Viscoelastic flows are represented well by hydrodynamighese consideration the following shell model was proposed
equations in which the effect of the polymer enters in thein Refs.[9,11]:
form of a “conformation tensorR(r,t) which stems from
the ensemble average of the dyadic product of the end-to-end  du, i i vp 5
distance of the polymer chairid6—19. A successful model ot - 32w = 2 P(B)®n(B,B) — vk + Fy,
that had been employed frequently in numerical simulations
of turbulent channel flows is the FENE-P model. Flexibility
and finite extensibility of the polymer chains are reflected by dB, i i 1 2
the relaxation timer and the Peterlin functioR(r,t), which ot - 3n(UB) = Z0a(B.u) — —P(B)B, — vekiBy,
appear in the equation of motion f&:

JR au dug 1
29 4 (- V)Rp= =R 5+ R, 2 - Z[P(r,)R -1
ap BT Ra 1URap PB) =————. 5
t ar, K y(?l'y T (B) 1-3, BB, (5
_Pg5aﬂ]' (1)

In these equationg,, andB,, stand for the Fourier amplitudes
— (2 _ 22 _ u(k,) and B(k,) of the two respective vector fields, but as
P = (o= p0) (pm = Ry @ usual in shell model we take=0,1,2,... and thevave vec-
In these equation;92m and pé refer to the maximal and the tors are limited to the sé&¢,=2". The parameterg=0.1v is
equilibrium values of the tracR,,. Since in most applica- an artificial viscosity needed to avoid the development of
tions p,,>pg the Peterlin function can also be written ap- unphysical singularities in the system. The nonlinear interac-
proximately asP(r,t)~1/(1-aR,,) where a':p;qz. In its  tion terms take the explicit form
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FIG. 3. The average value of the Peterlin functie(B) as a
function of c computed in the SabraP model. The dashed line cor- -4 —— e e 1
responds tdP=1. 1 3 56 7 9 11 13 15 17
. . log, k,
(I)n(u: B) = kn[(l - b)un+2Bn+1 + (2 + b)un+1Bn+2] + kn—l[(Zb L.
) ) FIG. 4. The spectrum of the energy d|$5|patkﬁe(kn) for the
+ DUy 1Bhig = (1 - b)un+1Bn—1] +kno[(2 Sabra(solid line with symbo) and the SabraP moddidashed ling
+b)Uy 1By p+ (2b+ 1)U, B, 4], (6) Both models have a maximum lgf with n~ 15, which corresponds

to the peak in the energy dissipation.

with b as a parameter and the obvious extensio®ttu,u),

@, (B,u) and ®,(B,B). In accordance with the generalized observed as an increase in the total kinetic energy of the
energy of the FENE-P mod¢l8,19, our shell model also flow.

has the total energy

1 1 Ill. SCALE DEPENDENT EFFECTIVE VISCOSITY
E= 52 g2 = E_TEm(l -> |Bn\2)- (7) IN HOMOGENEOUS DRAG REDUCTION
" " Drag reduction in homogeneous turbulence is manifested
The second term in the generalized energy contributes to th@s @ relative increase in the rms fluctuations of the energy at
dissipation a positive definite term of the form large scale*s. We thus focus naturally on the energy spectrum
(vyl P)PA(B)Z,|B, |2 With 1,=0 the first of Eqs(5) reduces e(k,) =(u,u,). In the context of the shell model the phenom-
to the well-studied Sabra model of Newtonian turbulence€non is demonstrated in Fig. 2 whea,) is shown for the
We therefore refer the model witl,#0 as the SabraP given values of the parameters. The spectra for the Sabra
model. As in the FENE-P case we considet v,/ vs to be model (line with symbolg and the coupled SabraP model
proportional to the concentration of polymers. In R@ it  (line) are compared for the same amount of power input per
was shown that this shell model exhibits drag reduction, andinit time. The discussion of the spectra revolves around the
the mechanism for the phenomenon was elucidated. Furthefypical Lumley scale, which is determined by the condition
more, it was shown in Refl1] that for large enough con- 1/2 =
centration, the Peterlin function can be disregar¢iezl P e kke~ 7 XP(B)). ©)
~1) and, consequently, the dynamics of the system becomesor k> k. the decay timer becomes irrelevant for the dy-
concentration independent, i.e., we reach the MDR asympamics ofB,,. The nonlinear interaction betweepandB,, at
tote. This behavior of the Peterlin function is shown in Fig.these scales results in both of them having, theoretically, the
3. Following this finding, we consider below the limiting same spectral exponent which is also the same as that of the
case in which the concentration is large enough for the PeSabra model. The amplitude of thig spectrum in the SabraP
terlin function to be close to unityP=1. Finally, all the  model is, however, smaller than that of the Sabra model
numerical simulations reported in this paper have been pesince theB, field adds to the dissipation. On the other hand,
formed by usingb=-0.2, »s=10"7, and a constant energy for k,<k, the B, field is exponentially suppressed by its
input given by decay with relaxation time, and the spectral exponent f
is again as in the Sabra model. Drag reduction comes about
_ 107 due to the interactions of thg andB, fields at length scales
Fn=— (8) : e
u, of the order ofk;, which force a strong tilt in the,, spectrum
there, causing it to cross the Sabra spectrum, leading to an
for n=1,2 andF,=0 for n> 2. We remark that for different increase in the amplitude of the energy containing scales.
values ofb one obtains the sanwualitative (but not quanti- This is why the kinetic energy is increased for the same
tative) results, which we shall describe later. A constant enamount of power input, and hence, drag reduction. A com-
ergy input is chosen in order to provide clear evidence oplete theoretical discussion is presented in R#.In Fig. 4,
drag reduction: for the same energy input, drag reduction isve show the spectrum of energy dissipatikfe(k,). This
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FIG. 5. Time behavior ofS,, as defined in Eq(10), which

represents the whole energy exchange fromuthféeld to B,,. Nega- 0 o ‘I‘ ‘ é ' é — —
tive values ofS, means that energy is taken fram.

log, k

n

figure indicates that the dissipative scale is not changed
g P 9 FIG. 6. The values of the eddy viscosity(k,) defined in Eq.

much by the coupling of the velocity field to the polymer - _ L S o
field: both the Sabra and SabraP models show a maximum gfl) for P(B)=1. Note that this quantity rises rapidly in the vicinity

k, with n~ 15, which is the dissipative scale. We now ad-° the Lumley scale.
dress the question how to recapture the same phenomenon in )
a model involving the velocity field alone but with a scale- N€W viscous term replaces, on the average, the effect of vis-
dependent effective viscosity. We first reiterate that the fielfOelastic terms proportional t@,(B,B). The equations of
u, loses energy in favor of the fiel,,. Using Eq.(5) we can ~ motion read
measure the energy transfer framto B, using the quantity

du, i

2 2
§= 2 k) = LRGSO BE). (10 gt g T el TGt P (42
n

) ) . We do not expect that,(k,) in the dynamicsof the Sabra
This function measures the exchange between the fluid k'r'nodel, as proposed in E@L2), will be exactly the object
netic energy and the “polymer” or “elastic” energy. n Fi9. 5 measured on the average defined in @4). We clearly must
we show a snapshot of the dependence of the fun&ian oo the functional dependencesgfon k., but we can allow
time. The point to notice is tha, is negative for most of the 5101 of proportionally that will take care of the difference
time. TheB, field drains energy from the velocr[_y field, and penyeen the dynamical intermittent behavior and the average
we therefore can hope to be able to capture its role by agepayior, We will therefore use the foravg(k,), wherea is
effective viscosity. Note, however, that the dynamic$Spls 5 ¢ nstant that can be optimized to achieve a close corre-

strongly intermittent; this feature is common to the shell : :
. ) spondence between the two-field model and the effective
model and the FENE-P model as observed in the direct nu b

. . : one-field model. Fore=0 it reduces to the Sabra model
merical simulations of th«_a Iatt_er. We cannot hope t0 Capturg iyt effective viscosity. We simulated the Sabra model
all the temporal complexity with the notion of effective vis-

v i the latter | tion. N thel thWith the effective viscosityEq. (12)] for different values of
cosity, since the 1atier 1S an average notion. Nevertheless, Ihe;, y,q range0,1). Drag reduction was found in all cases.

essenl featues il b shown (0 e repraduced, We Wiy 0 tre energy specirum on he g sl he mos
ity as follows: using(...) for the (time) average, we intro- relevant ones for drag reduction to occur, turns out to t_)e very
‘ . . Lo close to the SabraP modslth the viscoelastic terms$n Fig.
duce the scale dependent effective viscosifi,) as 7 we show the energy spectrum of the SabraP model and the
(s,(ky) energy spectrum of the Sabra model with effective viscosity
ve(Kn) :——sp—z . (11)  for «=0.3. It is interesting to understand whether one can
knelkn) compute the value of(k,) by using somea priori theoret-
The quantity vo(k,) is shown in Fig. 6; its maximum is ical estimates. We argue that this is possible by the following
reached ak, with n~6—7, awave number which is not yet considerationswy(k,) should reach its maximum near the
in the dissipative range. It is important to stress thék,) is  scalek;. Next, let us definey as the maximum value of
obtained by averaging over a complex and intermittent dy~e(ky). One can compute{' by the requirement that the Kol-
namical behavior of the viscoelastic shell model. It is there-mogorov scalé,, computed by using (the constant energy
fore not obvious that the main characteristics of drag reducinput) and VZ', must be as large as possible, although smaller
tion can be obtained by simply replacing the viscoelastidhank.. Thus, fork,>k. andk,<k., the detailed shape of
terms®,(B,B) by a scale-dependent effective viscosity. We v¢(K,) is not crucial to affect the dynamics of the system, i.e.,
demonstrate that this is possible by using now the Sabrthe detailed functional dependenceqfk) on k; is not rel-
model with an extra viscous term given by(k,)k?u,. The  evant as long as the region whergk) # 0 is not too narrow
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FIG. 7. The energy spectrum of the SabraP mg¢selid line) as FIG. 9. Energy flux computed for the SabraP mogelid line)

compared with the energy spectrum of the Sabra model with th@nd the Sabra model with effective viscosisymbols.

effective viscosity andv=0.3 (symbolg and the Sabra model with-
out effective viscositydashed ling ity vg) and the Sabra model with the effective viscosity

0.3v4(k,,). As one can clearly see, an increase of the dissipa-

about the scalé,. These arguments will be the subject for tion for all scales does not result in a drag reduction. Finally,
future investigations. we have computed the energy flux of the Sabra model with

In order to check that the results shown in Fig. 7 are duéffective dissipation and compared it against the energy flux

to a scale-dependendissipation, we have defined stale- of the SabraP model. This comparison is exhibited in Fig. 9
independent viscosity, as ’ where the solid line corresponds to the SabraP model and the

symbols correspond to the Sabra model with effective dissi-
_ <§E> pation 0.3,(k,). The two energy fluxes are equal in the in-
VA= Enkﬁe(kn)' (13 ertial range up to wave numbé&y with n~7.

The results illustrated so far support the conclusion that a
The definition ofw, is similar to that given in Eq¢1l), i.e.,  scale-dependent effective viscosity is able to reproduce most
va is defined such that, by adding a viscous tefgk2u, to  of the dynamics of the viscoelastic terms and, in particular,
the Sabra model, the systeam the averages losing the  the phenomenon of drag reduction. Let us remark once more,
same amount of energy as in the case of viscoelastic flows. that it is the scale dependencef the effective viscosity
turns out that in our case,~2.5X 107". By using this value  which is able to properly reproduce the drag reduction. It is
for vy we have numerically integrated the Sabra model byworthwhile to explain the mechanism of the action of the

adding a new viscosity equal tg,, namely scale-dependent viscosity, to understand its similarity to the
q . action of the polymers. For fixed energy input, as in our case,
Ath _ |—<I>n(u,u) = vakiu, — vdun + Fo. (14) Qrag reduction is shown as an increase of the rms fluctua-
dt 3 tions at scales larger than the Lumley scale. The scale-

The corresponding energy spectrum is shown in Fig. 8 togependent effective viscosity increases the viscous terms

: ) kﬁun in a particular range of scales, say fe<n<n,, where
gether with the energy spectrum for the Sabra m@dstos nu=log,(k.). The energy il in the system is given by the

third order correlation functiofil,~ (U;_;UUns1). As shown

-4 in Fig. 9, we can safely assert that the energy flux does not
-6 change fon<n.. The increase of viscosity at=n; produces
- a decrease of the energy at scale Thus, we expecti, to
-8 | decrease with respect to the value observed in the Newtonian
A —10 case. Sincél, is not affected by the increase of the viscosity
& . at n=n., we must conclude that the quantity_,u, should
%— -12 increase Whi|aJnC decreases. This is the origin of the tilt in
S _14 I the spectrum and the increaseupfspectrum in the vicinity
ie) L of n.. From a physical point of view, this picture is not dif-
-16 ferent from the one discussed in R¢8] where a similar
r N explanation for the drag reduction was invoked. Note that all
-18 i $ that we need for the phenomenon to occur is that the increase
-20 PR R RSP EEER I SN in viscosity should start at the right scale. This scale is
1 3 5 7 9 11 13 1 equivalent to the Lumley scale whose role in the viscoelastic

log, k, case has been already emphasized.
Finally, we discuss the effect of changing the concentra-
FIG. 8. Energy spectrum of the Sabra model fgr(line), the  tion on the effective viscosity. Whe(iP(B)) > 1 the effective
Sabra model with increased viscosity (symbol9, and for the  viscosity depends on the Peterlin function, which in turn de-
Sabra model with an effective viscosity 0¢8&,) (dashed ling pends on the concentratierand on the relaxation time cf.
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FIG. 11. Ratio of the kinetic energy for the Sabra model with
scale dependent viscosity and the kinetic energy of ths Sabra model
with fixed kinematic viscosity, for different values b= kgl. Note
that for drag reduction to occurs the ratio must be larger than 1. The
scale of the maximum in the scale dependent viscosity is kept fixed
while L — oo,

FIG. 10. Effective viscosity for varying the concentration:
=102 (circles, c=10"1 (squarey c¢=10 (triangle, and c=100

(line) previous sections. Note that farlarge enough, the system

exhibits drag enhancement. Physically, for very large values
) . . . i of k./ky the effective dissipation is just increasing the overall
Eq.(11). Figure 10 displays the effective viscosity as a func-yiscosity in the system and, therefore, no drag reduction can
tion of k, for four values of the concentratioo=10"%, 107, pe ghserved. For drag reduction to occur we must have the
10, and 100. As the concentration decreases, the effectig,mley scale close to energy containing scales. Note, how-
viscosity decreases, and its peak migrates to higher values @(/er, that “close” in our case meaks~50—100 larger than
kn. This migration is simply due to the change in the Lumleype integral scalé.
scale, cf. Eq(9). The decrease in the effective viscosity is |t js interesting to compare our findings, which pertain to
due to the increase itP(B)) shown in Fig. 3. Needless to pomogeneous systems, to drag reduction in turbulent bound-
say, these changes in the effective viscosity decrease the efry |ayers. The elastic layer in such flosetween the vis-
fect of drag reduction, as seen in experiments and simulazgys layer and the Newtonian plulgas the peculiar distinc-
tions: only large concentrations agree with the MDR asymption thaty, the distance from the wall, becomes the only
tote. important scale in the problem. It is both the energy contain-
ing scale and the Lumley scale at the same time. The former
IV. THE LIMIT OF LARGE SYSTEM SIZE is clear; at distancg from the wall the most energetic eddies
) ) ) o ] are of sizey. The latter needs a bit of theory, and this is
In this section we want to discuss the liti§— 0 while  provided in Ref[13]. The upshot of the analysis there is that
keeping fixed the scale and the shape of the effective viscosn the elastic layer the kinetic enerdg(y) scales likeK(y)
ity. In other words, we studg,— 0 for fixed value of the __y2/2 Thys, the Lumley scale is also Accordingly, the
Lumley scalek.. Note that we také: much smaller than the  phenomenon of drag reduction is totally indifferent to the
dissipative scale and we keep constant the rate of energyysical size of the channébr pipe. As long as the condi-

Inpute. L o _tions for drag reduction hold at distangérom the wall, drag
The discussion simplifies by considering the other typicaleqyction will occur and will have a persistent effect on the
scale in our system, which is the Taylor microsckfe mean flow independently of the outer scale. Eventually,
SRITE) wheny is large enoughk(y) may stop growing like/?, the
A= nz—“z (15 Lumley scale decreases, and we observe crossover back to
kel uy the Newtonian log layer, albeit shifted to a larger value of a

In Ref. [9] it was shown that the conditions are optimal for M&an velocity profile. _ _
drag reduction in our shell model when a dimensionless pa- ' SUmmary, drag reduction phenomena in homogeneous

rameter,u = Ak, is of the order of unity. On the other hand and wall bqunded fIO\_/vs have a lot in common even _though
drag reduction is lost whep> 1 or w<1. Obviously, when the effect disappears in the former when the system size goes
k,— O the overall kinetic energy increaseskgg’s while the  to infinity. The essential physw_s is the proximity of the Lum-
denominator in Eq(15) remains unchanged, being domi- ley sqale_to the energy containing scales, wh|ch allows an
nated by the viscous scale. Thits,— 0 leads ton;— =, and effective mte_ractlon between the polymer dynamics and the
we expect to lose drag reduction in that lintfor a fixed ~nydrodynamic modes.

value of k;). This conclusion is supported by the results
shown in Fig. 11, where we plot the ratio between the kinetic
energy with the effective viscosity and the Newtonian kinetic  The work presented in this paper supports two conclu-
energy forL=k;'—=. The caseL=1 corresponds to the sions. First, we demonstrated that drag reduction by poly-

V. CONCLUSIONS
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mers can be represented in terms of an effective scale depetfite largest scales to attain higher rms fluctuation levials
dent viscosity. One can use a theory in which two fields ardhomogeneous flowsor higher mean velocity(in wall
explicitly present, i.e., the velocity field and the polymer bounded flows To understand this further recall that for
field. Then the viscosity remains Newtonian, and the poly4aminar flows the drag is a strongly decaying function of Re.
mer conformation tensor acts as the additional sink of energ@®nce turbulence sets in, the dramatic increase in eddy vis-
at the intermediate scales which are larger than the viscousosity contributes to a drag which is much larger than the
scales but smaller than the Lumley scale. We can construcone obtained in a hypothetical laminar flow with the same
however, effective models in which only the velocity field is value of Re. The addition of polymers allows one to bring
present, and replace the polymer field by an effective viscosthe drag closer to the hypothetical low laminar value, and
ity. This effective viscosity will be different from the New- this is done by reducing the turbulence level at intermediate
tonian one at the crucial scales at which the polymers arscales. Whether one prefers to describe the quantitative as-
active, i.e., scales larger than the dissipative scales budects of this phenomenon using explicitly the polymer field
smaller than the Lumley scale. With a properly chosen effecer by employing an effective viscosity depends to a large
tive viscosity we can reproduce the results of the two-fieldextent on one’s goals. We expect that the concept of effective
theory qualitatively and even semiquantitatively. Havingviscosity will be found equally useful in discussing drag re-
done so, we reach a unified discussion of drag reduction bgluction in other situations, for example when microbubbles
polymers in homogeneous and wall bounded flows. It isare used instead of polymers. The quantitative aspects of
worth pointing out, however, that the unified discussion issuch a description need, however, to be worked out case by
deeper than the device of unified viscosity. Superficially dragcase, and this is our program for the near future.

reduction in homogeneous and wall bounded turbulence ap-
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